checkAd

    Kanazawa University research  129  0 Kommentare A biosensor for measuring extracellular hydrogen peroxide concentrations

    KANAZAWA, Japan, Feb. 26, 2021 /PRNewswire/ -- Researchers at Kanazawa University report in Biosensors and Bioelectronics a successful test of a sensor for measuring hydrogen peroxide concentrations near cell membranes.  The sensor has the potential to become a tool for new cancer therapies.

    Several processes in the human body are regulated by biochemical reactions involving hydrogen peroxide (H2O2). Although it can act as a 'secondary messenger', relaying or amplifying certain signals between cells, H2O2 is generally toxic because of its oxidant character. The latter means that it converts (oxidizes) biochemical molecules like proteins and DNA. The oxidizing property of H2O2 is of potential therapeutic relevance for cancer, though: deliberately causing tumor cells to increase their H2O2 concentration would be a way to destroy them. In light of this, but also for monitoring pathologies associated with H2O2 overproduction, it is crucial to have a means to reliably quantify hydrogen peroxide concentrations in the extracellular environment. Now, Leonardo Puppulin from Nano Life Science Institute (WPI-NanoLSI), Kanazawa University and colleagues have developed a sensor for measuring concentrations of H2O2 in the vicinity of cell membranes, with nanometer-resolution.

    The biosensor consists of a gold nanoparticle with organic molecules attached to it. The whole cluster is designed so that it anchors easily to the outside of a cell's membrane, which is exactly where the hydrogen peroxide molecules to be detected are. As attachment molecules, the scientists used a compound called 4MPBE, known to have a strong Raman scattering response: when irradiated by a laser, the molecules consume some of the laser light's energy. By measuring the frequency change of the laser light, and plotting the signal strength as a function of this change, a unique spectrum is obtained — a signature of the 4MPBE molecules. When a 4MPBE molecule reacts with a H2O2 molecule, its Raman spectrum changes. Based on this principle, by comparing Raman spectra, Puppulin and colleagues were able to obtain an estimate of the H2O2 concentration near the biosensor.

    Seite 1 von 4




    PR Newswire (engl.)
    0 Follower
    Autor folgen
    Verfasst von PR Newswire (engl.)
    Kanazawa University research A biosensor for measuring extracellular hydrogen peroxide concentrations KANAZAWA, Japan, Feb. 26, 2021 /PRNewswire/ - Researchers at Kanazawa University report in Biosensors and Bioelectronics a successful test of a sensor for measuring hydrogen peroxide concentrations near cell membranes.  The sensor has the potential …