checkAd

     173  0 Kommentare Weill Cornell Medicine and NanoString Collaborate to Create Comprehensive Spatial Atlas of Human Anatomy

    NanoString Technologies, Inc. (NASDAQ: NSTG), a leading provider of life science tools for discovery and translational research, announced the launch of the Spatial Atlas of Human Anatomy (SAHA) initiative, in collaboration with Weill Cornell Medicine, to create multicellular, single-cell, and sub-cellular maps of 30 non-diseased organs from a healthy and diverse population of adults.

    SAHA is a foundational effort to map 250 million cells at two spatial scales: whole transcriptome of histological features (50 µm to 2 mm in length) and 1,000 RNAs and 64 proteins at single cell resolution (50 nm resolution across 1 cm2). The project will establish best practices in experimental design, data analysis, and data standards for high-content spatial analysis across multiple human organs at a whole transcriptome and proteome level. The goal is to create a comprehensive open source, spatial reference standard that can be accessed by researchers around the globe to advance our knowledge of spatial biology.

    “The goal is for SAHA to be a foundational database that can serve as a benchmark reference for spatial precision medicine. Comparing spatial datasets of various organs from multiple ethnicities can capture the variability in samples that researchers do not currently understand,” stated Chris Mason, Professor of Physiology and Biophysics, Weill Cornell Medicine. “The research team plans to show how spatial organ atlasing at multiple scales can be used for uncovering unique insights into organ development, health, and cancer.”

    Dr. Mason will be presenting an overview of the SAHA study on Monday, February 6th at 6:10pm ET, at the Advances in Genome Biology and Technology conference in Hollywood, FL.

    The GeoMx Digital Spatial Profiler (DSP) will measure the expression of whole transcriptomes matched to the exact shape of functional and structural histological organ features. In addition, the 1,000-plex RNA profiles and 64-plex protein profiles collected by the CosMx Spatial Molecular Imager (SMI) will enable the highest-ever subcellular resolution single-cell maps of cell types, lineage states, metabolic capacity, cellular neighborhoods, subcellular movements of organelles, while also detailing spatially resolved and novel ligand-receptor interactions.

    Seite 1 von 3


    Business Wire (engl.)
    0 Follower
    Autor folgen

    Weill Cornell Medicine and NanoString Collaborate to Create Comprehensive Spatial Atlas of Human Anatomy NanoString Technologies, Inc. (NASDAQ: NSTG), a leading provider of life science tools for discovery and translational research, announced the launch of the Spatial Atlas of Human Anatomy (SAHA) initiative, in collaboration with Weill Cornell …

    Schreibe Deinen Kommentar

    Disclaimer