checkAd

     193  0 Kommentare FibroBiologics Presents Data from Dermal Fibroblast Spheroid-based Treatment of Chronic Wounds in a Diabetes Mouse Model at Advanced Wound Care Summit USA

    HOUSTON, April 04, 2024 (GLOBE NEWSWIRE) -- FibroBiologics, Inc., (Nasdaq: FBLG) ("FibroBiologics"), a clinical-stage biotechnology company with 150+ patents issued and pending for the development of therapeutics and potential cures for chronic diseases using fibroblasts and fibroblast-derived materials, announced today data from its latest study in a diabetes mouse model on the potential therapeutic efficacy of dermal fibroblast spheroids in treating chronic wounds. These findings will be presented via an oral and poster presentation at the Advanced Wound Care Summit USA in Boston, MA, April 16-17.

    Diabetic foot ulcers (DFUs) are prevalent in individuals with diabetes, with approximately 33 million people impacted globally. DFUs pose significant challenges for patients and the healthcare system due to impaired healing mechanisms associated with hyperglycemia, cellular senescence, and other comorbidities associated with diabetes. FibroBiologics' research aims to address this issue by investigating the potential of using human dermal fibroblast (HDF) spheroids in promoting and accelerating the wound healing process in diabetic patients.

    The study, led by a team of researchers including FibroBiologics’ Chief Scientific Officer, Hamid Khoja, Ph.D., utilized a diabetic mouse model to evaluate the therapeutic effects of HDF spheroids on mice with wounds resembling DFUs.

    Key findings from the study include:

    • Acceleration of wound healing with a 60% decrease in relative wound area within 4 days post-treatment with a single administration of HDF spheroids compared to standard of care treatment control.
    • Upregulation of pro-inflammatory cytokines such as interferon-gamma (IFN-γ), interleukins IL-1), and tumor necrosis factor-alpha (TNF-α), along with anti-inflammatory cytokines IL-6 and IL-10, indicating modulation of the wound microenvironment conducive to healing.
    • Increased levels of vascular endothelial growth factors (VEGF) and endothelial growth factor receptors (EGFR), suggesting enhanced revascularization and re-epithelialization in HDF-treated wounds.
    • Immunohistochemical analysis revealing the presence of markers indicative of fibroblast and endothelial proliferation, active cell proliferation, angiogenesis, and macrophage proliferation in HDF-treated wounds.

    "These results support the potential of HDF spheroids to expedite the healing process of chronic wounds associated with diabetes," said Dr. Khoja. "Our findings underscore the importance of further exploration and development of fibroblast spheroid-based therapies for clinical applications, particularly in patients with diabetic foot ulcers."

    Seite 1 von 3



    globenewswire
    0 Follower
    Autor folgen

    Verfasst von globenewswire
    FibroBiologics Presents Data from Dermal Fibroblast Spheroid-based Treatment of Chronic Wounds in a Diabetes Mouse Model at Advanced Wound Care Summit USA HOUSTON, April 04, 2024 (GLOBE NEWSWIRE) - FibroBiologics, Inc., (Nasdaq: FBLG) ("FibroBiologics"), a clinical-stage biotechnology company with 150+ patents issued and pending for the development of therapeutics and potential cures for chronic …