DAX-0,13 % EUR/USD-0,17 % Gold+0,16 % Öl (Brent)+0,52 %

International Center for Materials Nanoarchitectonics eBulletin Advanced Nano-fabrication Technology Catalyzing Discovery and Innovation at MANA

Nachrichtenquelle: PR Newswire (engl.)
21.03.2019, 17:29  |  346   |   |   

TSUKUBA, Japan, March 21, 2019 /PRNewswire/ -- International Center for Materials Nanoarchitectonics (MANA), Japan, publishes the March 2019 issue of the MANA E-Bulletin featuring article on 'Advanced nano-fabrication technology catalyzing discovery and innovation at MANA' in addition to research highlights on 'Photonic Circuits Hosting Electromagnetic Waves with Pseudospin'; ' Origins of Macroscopic Friction Linked to Energy Landscape on the Nanoscale'; and 'Porous Structure of a Layered Silicate with Selective Adsorption Properties Revealed'.

Namiki Foundry: Nanofabrication cleanroom facilities that includes 30 pieces of processing equipment in the 235m2 clean room
Microstrip system capable of hosting electromagnetic modes with orbital angular momentum
Structure of muscovite mica and considered sliding directions
The structure of magadiite features pores that have a selective adsorption function

March 2019

MANA E-BULLETIN VOL.06
https://www.nims.go.jp/mana/ebulletin/

FEATURE

Advanced nano-fabrication technology catalyzing discovery and innovation at MANA
Toshihide Nabatame
Manager of the Namiki Foundry, MANA

Facilities for lithography and nanofabrication were established at NIMS in 2004 under the leadership of Masakazu Aono, the Director the International Center for Materials Nanoarchitectonics (WPI-MANA) at NIMS from 2007 to 2017. The facilities became a part of WPI-MANA in 2009 and are now referred to as the Namiki Foundry.

More
https://www.nims.go.jp/mana/ebulletin/feature.html

Research Highlights

Photonic Circuits Hosting Electromagnetic Waves with Pseudospin
https://www.nims.go.jp/mana/research/highlights/vol47.html

Metamaterials are purposely built devices mimicking structural features of normal materials, but with unusual physical properties. Photonic crystals, for example, are periodic nanostructures consisting of material components with different refractive indices. They have lattice symmetries like solids, but the constituents of the unit cell of a photonic crystal are 'bits' of the different bulk materials. Similar to the structure–property relationships resulting from the behavior of electrons in solids (e.g. semiconduction), photonic crystals offer ways for manipulating the propagation of light. Now, Xiao Hu at the International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan, and colleagues have succeeded in creating a photonic metamaterial that displays a special property known as a topological photonic state.

More
https://www.nims.go.jp/mana/research/highlights/vol47.html

Reference
Y. Li et al., "Topological LC-circuits based on microstrips and observation of electromagnetic modes with orbital angular momentum", Nat. Comms. 9, 4598 (2018).
DOI: 10.1038/s41467-018-07084-2

Origins of Macroscopic Friction Linked to Energy Landscape on the Nanoscale
https://www.nims.go.jp/mana/research/highlights/vol48.html 
Everybody is familiar with friction — the phenomenon plays an important role in our daily lives. Yet, although phenomenological laws exist that describe friction on the macroscale, a detailed understanding of the processes involved on the microscale is lacking. Now, Hiroshi Sakuma and Shigeru Suehara (the International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan) with their colleagues have studied friction forces in mica, both theoretically and experimentally, and have found the origin of molecular friction in this system.

Seite 1 von 2
Mehr zum Thema
EURLandJapanNanoMAN


0 Kommentare

Schreibe Deinen Kommentar

Bitte melden Sie sich an, um zu kommentieren. Anmelden | Registrieren

 

Disclaimer

Meistgelesene Nachrichten des Autors

Titel
Titel
Titel
Titel