checkAd

     183  0 Kommentare IDTechEx Explores Innovation in Carbon Capture Technology

    BOSTON, April 22, 2021 /PRNewswire/ -- Carbon capture technology may be essential for the world to stay within the 2°C warming target outlined by the Paris Agreement. Although the deployment of this technology has begun to pick up in recent years, it is still a long way from the levels of scale-up needed to have a meaningful impact on climate change. Current technology for stripping CO2 from industrial gas streams or directly from the atmosphere remains costly and energy-intensive, and existing carbon capture facilities have struggled with downtime, keeping to CO2 capture targets, and managing costs.

    Basic overview of a solvent-based CO2 capture process. Source: IDTechEx

    In this climate, there are significant research efforts aiming to boost the effectiveness of CO2 capturing technology and facilitate deployment of what could be a vital technology in the fight against climate change. "Carbon Capture, Utilization, and Storage (CCUS) 2021-2040" is a new report from IDTechEx analyzing the technical and commercial factors that could be key to the long-term success of carbon capture technology.

    Almost all large-scale carbon capture facilities currently in operation use solvent-based capture methods, where the CO2-containing gas stream is exposed to a liquid medium that absorbs the CO2 by either a physical or chemical mechanism. The absorption liquid is then regenerated using high temperatures or reduced pressures to break the absorbent-CO2 bond, yielding a pure stream of CO2 that can be further processed. Although solvents can capture high levels of CO2, regeneration can be extremely energy-intensive, particularly for chemical sorbents, making the CO2 capture process uneconomical and reducing the sustainability of the process.

    Chemical absorption solvents are the most mature method of capturing CO2, with most carbon capture facilities currently relying on them. Chemical absorption is based on a reaction between CO2 and the solvent, leading to weak chemical bonds being formed. Chemical absorption solvents are generally more selective for CO2 than physical absorption solvents and are effective even at low partial pressures of CO2, enabling high levels of absorption.

    Most chemical absorption solvents are based on amines, with amines having been used for CO2 removal in gas treatment industrially since the 1950s. Primary alkanolamines such as MEA and DGA are the most widely used solvents for carbon capture, offering high chemical reactivity, favorable kinetics, and acceptable stability. However, there are also several drawbacks, including high energy consumption during solvent regeneration, corrosiveness, meaning that inhibitors and resistant materials are required, difficulties in scaling up to the level of thousands of tonnes of CO2 capture per day, and degradation in the presence of O2, SOx, and other impurities such as particles, HCl, HF, and Hg.

    Seite 1 von 5



    PR Newswire (engl.)
    0 Follower
    Autor folgen

    Verfasst von PR Newswire (engl.)
    IDTechEx Explores Innovation in Carbon Capture Technology BOSTON, April 22, 2021 /PRNewswire/ - Carbon capture technology may be essential for the world to stay within the 2°C warming target outlined by the Paris Agreement. Although the deployment of this technology has begun to pick up in recent years, it …

    Schreibe Deinen Kommentar

    Disclaimer