checkAd

     127  0 Kommentare Roche improves speed and accuracy of non-small cell lung cancer diagnosis with launch of automated digital pathology algorithm

    • uPath PD-L1 (SP263) image analysis uses automated pre-computing and one-click scoring to enable quicker and accurate detection and measurement of tumour cell staining positivity
    • Roche advances personalised healthcare with development of image analysis algorithms using artificial intelligence
    • Faster, more accurate diagnoses are critical with non-small cell lung cancer, which accounts for about 85 percent of all lung cancer cases

    Basel, June 26, 2020 - Roche (SIX: RO, ROG; OTCQX: RHHBY) today announced the CE-IVD launch of its automated digital pathology algorithm, the uPath PD-L1 (SP263) image analysis for non-small cell lung cancer (NSCLC). The algorithm provides pathologists with automated assessments of scanned slide images that are objective and reproducible and have the potential to aid diagnosis and, ultimately, targeted treatment options for patients.

    Validated on the VENTANA PD-L1 (SP263) Assay, the algorithm is ready-to-use and integrated within the Roche uPath enterprise software, a universal digital platform for case management, collaboration and reporting. This algorithm will help pathologists to quickly determine whether tumours are positive for the PD-L1 biomarker, highlighting positively and negatively stained tumour cells with a clear visual overlay for easy reference. Patients with tumours that are positive for the PD-L1 biomarker may be eligible for targeted treatment.

    “Improving diagnostic consistency and certainty is crucial in providing faster, higher-quality and more accurate diagnoses to cancer patients,” said Thomas Schinecker, CEO, Roche Diagnostics. “Our uPath PD-L1 (SP263) image analysis for non-small cell lung cancer is the first next-generation CE-IVD PD-L1 algorithm to the clinical market. It expands on our growing digital pathology suite for VENTANA assays that aid physicians in providing the most accurate treatment decisions for patients with the most common type of lung cancer.”

    The algorithm’s whole-slide automated analysis uses artificial intelligence to provide, with one-click, an actionable assessment of the scanned slide images that is objective and reproducible. The uPath PD-L1 (SP263) image analysis (NSCLC) algorithm for digital pathology is for use on uPath enterprise software.

    About uPath image analysis algorithm suite
    The uPath image analysis algorithm suite for pathology decision support offers ready-to-use image analysis tools, providing fast, consistent and automated analysis so that pathologists can quickly, accurately and confidently assess immunohistochemistry/in situ hybridization and hematoxylin and eosin-stained slides. This launch of uPath PD-L1 (SP263) image analysis for non-small cell lung cancer follows the January 2019 release of the Roche uPath enterprise software. All algorithms in the suite for uPath software will provide image analysis of VENTANA DP 200 scanned slide images stained with a Roche tissue assay. Together, Roche is delivering a new foundation of its digital pathology solution which will enable the development of artificial intelligence-based image analysis algorithms that can provide pathologists more tools to improve efficiency and precision.

    Seite 1 von 3



    Diskutieren Sie über die enthaltenen Werte



    globenewswire
    0 Follower
    Autor folgen

    Verfasst von globenewswire
    Roche improves speed and accuracy of non-small cell lung cancer diagnosis with launch of automated digital pathology algorithm uPath PD-L1 (SP263) image analysis uses automated pre-computing and one-click scoring to enable quicker and accurate detection and measurement of tumour cell staining positivityRoche advances personalised healthcare with development of image …